Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex.

نویسندگان

  • Michael J McConnell
  • Dhruv Kaushal
  • Amy H Yang
  • Marcy A Kingsbury
  • Stevens K Rehen
  • Kai Treuner
  • Robert Helton
  • Emily G Annas
  • Jerold Chun
  • Carrolee Barlow
چکیده

Aneuploid neurons populate the normal adult brain, but the cause and the consequence of chromosome abnormalities in the CNS are poorly defined. In the adult cerebral cortex of three genetic mutants, one of which is a mouse model of the human neurodegenerative disease ataxia-telangiectasia (A-T), we observed divergent levels of sex chromosome (XY) aneuploidy. Although both A-T mutated (Atm)- and transformation related protein 53 (Trp53)-dependent mechanisms are thought to clear newly postmitotic neurons with chromosome abnormalities, we found a 38% increase in the prevalence of XY aneuploidy in the adult Atm-/- cerebral cortex and a dramatic 78% decrease in Trp53-/- mutant mice. A similar 43% decrease in adult XY aneuploidy was observed in DNA repair-deficient Xrcc5-/- mutants. Additional investigation found an elevated incidence of aneuploid embryonic neural progenitor cells (NPCs) in all three mutants, but elevated apoptosis, a likely fate of embryonic NPCs with severe chromosome abnormalities, was observed only in Xrcc5-/- mutants. These data lend increasing support to the hypothesis that hereditary mutations such as ATM-deficiency, which render abnormal cells resistant to developmental clearance, can lead to late-manifesting human neurological disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation.

Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

P50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation

In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 37  شماره 

صفحات  -

تاریخ انتشار 2004